

CONSTITUENTS OF BRAZILIAN LEGUMINOSAE*

MARIZA DRUMOND FORMIGA,[†] OTTO R. GOTTLIEB,
 PAULO HENRIQUES MENDES,[‡] MIDORI KOKETSU,[‡]
 M. ELITA LEITE DE ALMEIDA,[§]
 MARILIA OTTONI DA SILVA PEREIRA[†] and
 MAURO TAVEIRA MAGALHÃES[‡]

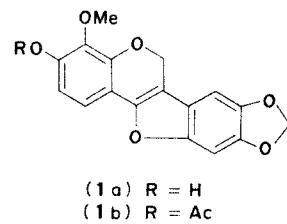
Instituto de Química, Universidade de São Paulo, Brasil

(Received 2 October 1974)

Key Word Index—*Swartzia ulei*; *Dalbergia miscolobium*; *Machaerium secundiflorum*; *Vatairea heteroptera*; *Vatairea* spp.; *Vataireopsis* spp.; Leguminosae-Lotoideae; 3-hydroxy-4-methoxy-8,9-methylenedioxypoterocarp-6a-ene; flavonoids, anthraquinones; triterpenoids.

Plant. *Swartzia ulei* Harms [2] was collected in the vicinity of Manaus, Amazonas, and identified by the botanist W. Rodrigues. **Trunk wood.** The C₆H₆ extract (50 g ex 4.3 kg) was chromatographed on silica (750 g) giving, in succession, upon elution with C₆H₆, aliphatic esters (1 g), **1a** (recryst. C₆H₆, 50 mg), a mixture of sitosterol and stigmasterol (recryst. C₆H₆, 125 mg) and *O*-acetyloleanolic acid (recryst. AcOEt, 40 mg); upon elution with C₆H₆-CHCl₃ 9:1 stearic acid (recryst. MeOH, 55 mg).

3-Hydroxy-4-methoxy-8,9-methylenedioxypoterocarp-6a,11a-dehydropterocarpan (1a). crystals, mp 196-198° (found: C, 65.52; H, 4.00. C₁₇H₁₂O₆ requires: C, 65.38; H, 3.88%). The UV [$\lambda_{\text{max}}^{\text{EtOH}}$ (nm): 245, 290, inf., 320, inf., 336 (ϵ 15600, 11800, 19000, 32400); $\lambda_{\text{EtOH}+\text{NaOH}}^{\text{max}}$ (nm): 250, 305, inf., 359 (ϵ 13700, 8100, 34600)] and IR [$\nu_{\text{max}}^{\text{KBr}}$ (cm⁻¹): 3500, 1650, 1600, 1500, 1470, 1380, 1335, 1200, 1050, 940, 900, 850, 810] spectra were compatible with the analogous spectra of 6a,11a-dehydropterocarpanos [3-5]. Indeed, the PMR [τ (CD₃COCD₃): 2.89 (s, H-7), 2.90 (d, J 8.0 Hz, H-1), 3.04 (s, H-10), 3.45 (d, J 8.0 Hz, H-2), 3.97 (s, O₂CH₂), 4.40 (s, 2H-6), 4.47 (s, OH), 6.17 (s, Me)] spectrum contained the 2H singlet typical of the heterocyclic hydrogens of pterocarp-6a-ens [4, 5]. This system must be substituted by OH, OMe and O₂CH₂ [MS (*m/e*): 312 (100%) M, 313 (25), 311 (50), 296 (25), 281 (5), 269 (5), 241 (15), 212 (25), 157 (20)] as indicated in **1a**. All known natural pterocarpanoids show oxygenation at C-3 and C-9 [3-6], and it is an *ortho*-split doublet, located at higher field than all other aromatic H signals and thus corresponding to H-2, which suffers the strongest paramagnetic shift [Δ (ppm): H-1 0.06, H-2 0.18, H-7 0.04, H-10 0.04] by acetylation to **1b** [mp 185-187 (C₆H₆)].


* Part XLVIII in the series "The Chemistry of Brazilian Leguminosae". For Part XLVII see Ref. [1]. Sponsored by Instituto Nacional de Pesquisas da Amazônia, Conselho Nacional de Pesquisas, Manaus, and by Ministério do Planejamento (Financiadora de Estudos e Projetos S.A.) through Academia Brasileira de Ciências.

† Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte.

‡ Centro de Tecnologia Agrícola e Alimentar, Embrapa, Rio de Janeiro.

§ Departamento de Química, Universidade Federal Rural do Rio de Janeiro.

Plant. *Dalbergia miscolobium* Benth. [7], trivial name "caivuna", was collected in Belo Horizonte, Minas Gerais and identified by the botanist A. Pereira Duarte. **Leaves.** The C₆H₆ extract, washed with light petrol., gave crude prunetin (1.5% of the air-dried leaves) which was purified by precipitation from 3% aq NaOH and crystallizations from dioxane.

(1a) R = H

(1b) R = Ac

Plant. *Machaerium secundiflorum* Mart., trivial name "canela de velho", was collected at the Experimental Station of Água Limpa, Minas Gerais, and identified by the botanist A. Pereira Duarte. **Trunk wood.** The C₆H₆ extract (85 g ex 17.8 kg) was chromatographed on silica. Successive elution with C₆H₆, C₆H₆-AcOEt and MeOH and purification of the fractions by rechromatography and/or crystallization gave saturated aliphatic alcohols, sitosterol, 3-*O*-acetyl- β -amyrin, 3-*O*-acetyloleanolic aldehyde and 3-*O*-acetyloleanolic acid identified by direct comparison with authentic samples from other *M.* species [7, 8].

Plant. *Vatairea heteroptera* (Fr. Allem.) Ducke was collected at the Linhares Forest Reserve, Rio Doce, Espírito Santo, and identified by the botanist C. Mainieri. **Trunk wood.** The C₆H₆ extract (110 g ex 6 kg) was chromatographed on silica. Elution with solvent of increasing polarity gave, in succession, chrysophanol (0.5% of wood sample), saturated fatty acids (mainly C₂₆H₅₂O₂ and C₂₄H₄₈O₂), sitosterol plus stigmasterol, emodin, (2S)-7-hydroxyflavanone and formononetin. (2S)-7-Hydroxyflavanone was identified by direct comparison with an authentic sample from *Platymiscium praecox* Mart. [9]. Prof. J. W. Clark-Lewis kindly called our attention to the fact that in the paper on this species, the absolute configurations of this compound and of (2R,3R)-3,7-dihydroxyflavanone were wrongly given respectively as 2R and 2S,3S.

Note. A collection of the Rio de Janeiro Botanic Garden includes trunk wood samples of *Vatairea guianensis* Aubl.

(source: Pará), *Vatairea macrocarpa* (Benth.) Ducke (Minas Gerais), *Vatairea paraensis* Ducke (Pará), *Vatairea sericea* Ducke (Pará), *Vataireopsis araroba* (Aguilar) Ducke (Espírito Santo), *Vataireopsis speciosa* Ducke (Amazonas) and *Vataireopsis pallidiflora* Rizz. (Goiás). Small, mostly heartwood, fragments were secured by courtesy of the botanist A. de Mattos. TLC (SiO_2 , C_6H_6 -AcOEt-MeOH 72:25:3) examination of their C_6H_6 extracts failed to reveal the presence of chrysophanol only in the extract from *V. pallidiflora*, prepared from a softwood sample.

Acknowledgements—The MS were registered by Dr. C. H. Williams Jr. through the courtesy of Dr. J. de Paiva Campello, Universidade Estadual de Campinas.

REFERENCES

1. Braz Filho, R., Gottlieb, O. R. and Mourão, A. P. (1975) *Phytochemistry* **14**, 261.
2. Ducke, A. (1949) *As Leguminosas da Amazônia Brasileira* 2nd Edn., Boletim Técnico do Instituto Agronômico do Norte, No. 18, Belém.
3. Harper, S. H., Kemp, A. D. and Underwood, W. G. E. (1965) *Chem. Commun.* 309.
4. Donnelly, D. M. X. and Fitzgerald, M. A. (1971) *Phytochemistry* **10**, 3147.
5. Adityachaudhury, N. and Gupta, P. K. (1973) *Phytochemistry* **12**, 425.
6. Ollis, W. D. (1968) in *Recent Advances in Phytochemistry* (Mabry, T. J., Alston, R. E. and Runeckles, V. C., eds.), Vol. 1, p. 329. Appleton-Century-Crofts, New York.
7. Braga de Oliveira, A., Gottlieb, O. R. and Ollis, W. D. (1971) *Phytochemistry* **10**, 1863.
8. Magalhães Alves, H., Arndt, V. H., Ollis, W. D., Eyton, W. B., Gottlieb, O. R. and Taveira Magalhães, M. (1966) *Phytochemistry* **5**, 1327.
9. Braga de Oliveira, A., Fonseca e Silva, L. G. and Gottlieb, O. R. (1972) *Phytochemistry* **11**, 3515.

Phytochemistry, 1975, Vol. 14, pp. 829-830. Pergamon Press. Printed in England.

SITOSTEROL- β -D-GALACTOSIDE FROM *HIBISCUS SABDARIFFA**

A. M. OSMAN, M. EL-GARBY YOUNES and A. MOKHTAR

Department of Chemistry, Faculty of Science, University of Assiut, Assiut, Egypt, A.R.E.

(Received 24 June 1974)

Key Word Index—*Hibiscus sabdariffa*; Malvaceae; karkade; sitosterol- β -D-galactoside.

Hibiscus sabdariffa (Malvaceae) or karkade is widely used in Egypt for curing heart and nerve diseases [1, 2]. Previously [3] we reported the isolation of a steroid compound of unknown structure from the leaves of this plant.

The neutral part of the non-volatile fraction of the Et_2O extract of defatted leaves deposited colourless rosettes which were recrystallised (3 \times CHCl_3) to yield sitosterol- β -D-galactoside, m.p. 275-277° (decomp.), $[\alpha]_D -63^\circ$ (in pyridine), ν_{max} 3450 cm^{-1} (b, OH), NMR (in deuterated pyridine) showed peaks at τ 4.68 (t, one olefinic H), τ at 6.29 (t, H α - to OH). Tetraacetate (needles, MeOH-CHCl_3), m.p. 149-151°, $[\alpha]_D -33.3^\circ$; MS; parent ion m/e 744 (agreeing with $\text{C}_{43}\text{H}_{68}\text{O}_{10}$); 331, 211, 229, 169 and 109 (characteristic for glycoside tetraacetates [4]); and at m/e 414 and m/e 396 (base peak), NMR showed sharp peaks at τ 7.9-8.0 (four

acetate groups), τ at 4.72 (t, one olefinic H). Tetrabenzoate (MeOH-CHCl_3), mp 196-198°, $[\alpha]_D +10.5^\circ$.

Acid hydrolysis [5] of the glycoside gave sitosterol (mp, mmp 132°, $[\alpha]_D -34^\circ$, IR, $\text{M}^+ 414$) plus galactose (R_f PC 0.12; $\text{BuOH-AcOH-H}_2\text{O}$, 4:1:2-2).

Sitosterol- β -D-galactoside was synthesized [6] from acetobromogalactose pentaacetate [7] and HBr gas in Ac_2O , to obtain a green gum which was dissolved in dry dioxane and added dropwise over 1 hr to a slurry in dioxane of sitosterol, Ag_2CO_3 and MgSO_4 . After 20 hr at room temp., the product was chromatographed over alumina to give sitosterol- β -D-galactoside tetraacetate identical in all respects (IR, mp, mmp and specific rotations) with the natural compound tetraacetate.

It is interesting to note that whereas sitosterol- β -D-glucoside has been isolated from several plant sources, this is the first report of the galactoside.

* Part XIII in a series. For Part XII see Ref. [8].